Sunday 8 March 2020

How electricity is delivered to our homes?

I work for an electric utility and this is how we do it.

It all starts at the generating station. In this case, It is coal fired. The generators generate electric at 13.8 thousand volts (13.8kv). As the power leaves the building, it goes in to a transformer that steps up the voltage up to 138 thousand volts (138kv). It then goes to a substation where it is sent out over several lines that take it to other substations. Some of the power in that first substation is also put through another transformer that steps up the voltage to 345 thousand volts (345kv) for long distance transmission. Higher voltages are used for longer distance transmission since you can get by with smaller wires.


A large 345kv to 138kv transformer. I am standing next to it to give an idea of scale. I am 6'-2" (188cm)

These substations contain breakers just like you have in your house only much larger to protect the system in case of a problem. Each circuit coming in and going out of any substation will have at least one breaker on it for protection.

Here is a 345kv breaker. Just to the right is the stand that it will be mounted on. Perhaps I should have posed like a spokesmodel for these pictures.

So, the electric leaves the generation station substation and travels down the wires at 138kv. It enters another substation where it goes in to a transformer where it is stepped down to 69kv and is divided in to several circuits.

Here is a smaller 69kv to 12.5kv transformer. Yes, I'm aware that I'm dressed like a slob. They don't pay me to be pretty.

If we follow one of the 69kv circuits, it will then either go to another location within this substation or it will travel down the wires to a smaller substation. For the purposes of this explanation, we will assume that it goes to another smaller substation. When it gets there, it goes in to another transformer that steps it down to 12.5kv. That voltage is then sent to a switch gear with breakers where it is divided up in to more circuits.

This is a 69kv breaker. The legs it would be mounted on are laying across the bottom. Next time I'll hire a model to pose for these shots. Jeez, you people are so critical.

These 12.5kv circuits then go out to provide power to a neighborhood. Once it gets there, it will go to several small transformers that are either hanging on a pole with the overhead wires or a transformer on the ground if the wires are run underground. These small transformers will feed several homes and step the voltage down to 2 legs with 120 volts each for a total of 240 volts. This voltage goes into your home at the circuit breaker panel and more breakers and is distributed throughout your home.

Here is a switchgear, used to send the power out to your neighborhoods. This is the last picture of me you will have to endure.

So there it is. A quick and dirty guide to how electric gets to your house. However, I have left out a lot of details that would unnecessarily make this post a lot longer as most people would not really be interested. There is a lot of redundancy on the system in order to keep things running in the event of problems. There is a lot of technology being used for protection and such. If taken as a whole, the American electric grid is the most complicated machine that mankind has ever created. I have worked for the electric utility for 10 years and I am still awed by what it takes to keep the lights on.

No comments:

Post a Comment

AC 12V-0-12V transformer