Friday, 20 October 2017

Short Circuit شارټي

"Make sure you don't short the battery, otherwise it will burn"

Language is important.

If you know what "short" means, you can easily make sure the battery don't burn.

If you don't know...

..well, you will have no idea if what you are doing will cause the battery to burn or not.

To "short" something means to create a short circuit.

A short circuit is a connection that was not meant to be there.

For example, if you accidentally connect the plus to the minus of a battery, you'll have a short circuit between plus and minus of the battery.

Which is not good because some batteries can actually explode if you short them.

What Causes A Short Circuit?

If you built the circuit, the most probable is that YOU caused the short circuit.

I know that's hard to accept.

I never accept it.

...until I find the error and I realize there's no way I can blame this on someone else.


It's usually because I made one of these errors:

* Connected something the wrong way

* Added too much solder to a pad so that it flowed over to a neighbouring pad and created a solder bridge

* Clipped of a component leg that landed on my circuit

* Placed my circuit on top of something made of metal

Also, if a component in your circuit is damaged, it can create a short circuit.

What do you need to do to create less short circuits? And to find the short circuits you do create?

Practice.

Build many circuits.

Saturday, 14 October 2017

د بریښنا انتقال او ویش Transmission and Distribution Lines

Transmission and Distribution Lines





       The power plants typically produce 50 cycle/second (Hertz), alternating-current (AC) electricity with voltages between 11kV and 33kV. At the power plant site, the 3-phase voltage is stepped up to a higher voltage for transmission on cables strung on cross-country towers. High voltage (HV) and extra high voltage (EHV) transmission is the next stage from power plant to transport A.C. power over long distances at voltages like; 220 kV & 400 kV. Where transmission is over 1000 kM, high voltage direct current transmission is also favoured to minimize the losses.

Sub-transmission network at 132 kV, 110 kV, 66 kV or 33 kV constitutes the next link towards the end user. Distribution at 11 kV / 6.6 kV / 3.3 kV constitutes the last link to the consumer, who is connected directly or through transformers depending upon the drawl level of service. The transmission and distribution network include sub-stations, lines and distribution transformers. High voltage transmission is used so that smaller, more economical wire sizes can be employed to carry the lower current and to reduce losses. Sub-stations, containing step-down transformers, reduce the voltage for distribution to industrial users. The voltage is further reduced for commercial facilities. Electricity must be generated, as and when it is needed since electricity cannot be stored virtually in the system.

There is no difference between a transmission line and a distribution line except for the voltage
level and power handling capability. Transmission lines are usually capable of transmitting large quantities of electric energy over great distances. They operate at high voltages.
Distribution lines carry limited quantities of power over shorter distances.
Voltage drops in line are in relation to the resistance and reactance of line, length and the current drawn. For the same quantity of power handled, lower the voltage, higher the current drawn and higher the voltage drop. The current drawn is inversely proportional to the voltage level for the same quantity of power handled. The power loss in line is proportional to resistance and square of current. (i.e. PLOSS=I2R). Higher voltage transmission and distribution thus would help to minimize line voltage drop in the ratio of voltages, and the line power loss in the ratio of square of voltages. For instance, if distribution of power is raised from 11 kV to 33 kV, the voltage drop would be lower by a factor 1/3 and the line loss would be lower by a factor (1/3)2 i.e., 1/9. Lower voltage transmission and distribution also calls for bigger size conductor on account of current handling capacity needed.