Tuesday 18 August 2020

Selection of Poles and Pole Tops For MV Line Design

 Selection of Poles and Pole Tops

Typical pole sizes are presented in when selecting poles, potential future sub-circuits and streetlight mounting must be considered, if these are identified / known during the design phase.

Apart from spanning and angular limitations, selecting a suitable pole top configuration should take in to account:

1) Life cycle suitability;

2) Reliability;

3) Suitability for the environment (vegetation, wild life, salt and/or industrial pollution levels); and

4) Ease of construction and maintenance.


Horizontal (flat) construction has the advantage of reduced pole height at the expense of a wider line and corresponding broader easement width.

Flat configurations are preferred in areas frequented by birds. For higher risk spans increasing conductor separation can reduce conductor flash-over due to bird impact. Attaching bird diverts on conductors is also effective as a visual warning to birds.

Delta pin configuration provides for both horizontal and vertical separation and helps reduce conductor clashing.

Overall, more compact pole top configurations are less visually obstructive. It is best to keep to reasonably consistent configurations to maintain visual amenity as well as maintain spanning capability and ease of conductor phasing.

Route Survey and Ground Line Profile for MV Line Design

 Route Survey and Ground Line Profile for MV Line Design

A ‘line route survey’ is carried out to determine:

a) Details of existing electricity infrastructure;

b) Terrain and site features, e.g. trees, access tracks, fences, gullies; and

c) Ground line rise and fall along the route.

Ground line profiling may not be necessary for minor projects in urban areas where the ground is reasonably level or has a consistent slope throughout and there are no on site obstructions.

The designer can check worst case ground clearances by deducting the sag in the span from the height of the supports at either end by taking the following measurements:

a) Conductor temperature

b) Conductor size/type

c) Ambient temperature

d) Conductor attachment point with respect to ground level

e) Strain points

However, ground line profiling is essential where:

1) Poles have to be positioned along an undulating traverse;

2) There is a 'hump' or change in gradient in the ground at mid span;

3) Outside of urban areas where spans are comparatively long-say in excess of 80 m;

4) The designer has doubts about the adequacy of required clearances; and

5) Where uplift on poles is suspected.

The equipment used to obtain measurements will depend on the complexity of the project. For many distribution lines, a simple electronic distance measuring device and inclinometer are adequate. Elsewhere, use of a high end GPS unit or LiDAR may be warranted. The route is broken up into segments, typically corresponding with 'knee points' or changes in gradient. Slope distance and inclination measurements for each segment can be converted to chainage and reduced level (RL) values to facilitate plotting as follows:


Software packages can be used to plot survey data. Apart from the ground line, various features and stations must be shown, including existing poles, gullies, fences, obstacles, roadways. A clearance line is then drawn offset from the ground line, according to the minimum vertical clearances that apply.

Selection of Conductor Size and Type For MV Line Design

 Selection of Conductor Size and Type For MV Design

Factors influencing selection include:

a) Load current and whether the line is 'backbone' or a spur;

b) Line voltage and voltage profile along the line;

c) Fault levels and line rating;

d) Environmental conditions – ambient temperature, vegetation, wildlife, pollution or salt spray;

e) Compatibility with existing adjacent electrical infrastructure;

f) Required span lengths and stringing tension; and

g) Future requirements with respect to distribution system planning.


Selection of Route for MV Line

 Selection of Route

Ideally, the line route should be as short and straight as possible in order to minimize costs, minimize stays and have a tidy appearance. However, some other factors that need to be taken into account are:

a) Land issues, ease of acquisition, rights over private lands etc.;

b) Ease of obtaining necessary approvals;

c) Stakeholder considerations and acceptance;

d) Vegetation clearing, environmental and visual impact, EMF impact;

e) Access for construction, maintenance and operations;

f) Ease of servicing all lots for Low Voltage Lines;

g) Compatibility with future development;

h) Waterways, parks and natural habitat; and

i) Terrain suitability and ground conditions (excavation, pole foundation etc.)


DESIGN PROCESS OF MV LINE

 DESIGN PROCESS

Typical steps in an overhead distribution line design are shown below. The actual steps and their sequence will depend upon the individual project and the context in which the design is performed.

The process is iterative, with the designer making some initial assumptions, e.g. as to pole height and size, which may later need to be adjusted as the design is checked and gradually refined. The optimum arrangement that meets all constraints is required as the final outcome. Utility Power uses overhead line simulation software to aid the design process.

Determine Design Inputs

Prior to commencing design, it is important to collect and document all relevant design inputs. This may include:

a) planning reports, concept, specification or customer request for supply initiating the project;

b) load details, disturbing loads etc;

c) special requirements of customers or stakeholders (e.g. supply reliability);

d) system planning requirements;

e) information about possible future stages or adjacent developments, road widening or other;

f) applicable relevant standards and statutory requirements;

g) co-ordination with other utilities - 'Dial Before You Dig' results

h) co-ordination with road lighting design;

i) survey plans or base maps;

j) any site constraints identified and

k) environmental factors (as elaborated below)

The designer should take into consideration the environmental factors which could influence the design of the supply arrangement, e.g. selection of and location of equipment, etc.

For example, suppose an overhead MV line is to be constructed to supply a customer remote from a zone substation, and the line route traverses an area of high lightning activity. It would seem prudent for the designer to include an earth-wire system to shield the conductors, in the line design, even though this is not normal practice for distribution lines.

Similar considerations should apply for lines or installations close to the coast, which are subjected to high salt-pollution levels. High pollution insulators may be incorporated in the line design.

Consideration must be given to the location of the equipment or the environment the equipment is to operate in. For example, a pole top transformer may not be entirely suitable for use outside a cement plant or quarry, where the build up of fly-ash or dust on insulators may lead to nuisance tripping or a disproportionately high level of maintenance. Others include mines sites, with open air blasting, etc.

Consideration shall also be given to:

• Cultural Heritage and Native Title;

• Environmental approvals for clearing or removal of native vegetation; and

• Siting of Substations with respect to Noise Control.

Current statutory processes require a range of approvals to be obtained prior to commencement of works. Due to the time taken to obtain these approvals, these issues must be considered at the commencement of a project.

As per the Western Australian Distribution Connections Manual (WADCM Section 6.12) environmental and heritage impacts must be investigated and managed by the applicant for power supply and their agent. Issues may include but are not limited to the following:

a) Aboriginal heritage sites and objects of suspected aboriginal origin;

b) Acid sulphate soils;

c) Bio-security weeds, pests and disease spread (e.g. dieback disease);

d) Declared rare flora and threatened ecological communities;

e) Dust;

f) Erosion;

g) Land entry permits;

h) Native title;

i) Noise;

j) Protected wetlands;

k) Vegetation clearing permits; and

l) Waste management including controlled waste.

The design should be 'traceable' back to a set of design inputs. Persons other than the original designer should be able to review the design and see why it was done a certain way.



Monday 17 August 2020

Pre – Line Design Considerations

 Pre – Line Design Considerations

There are certain basic requirements that have to be considered when designing overhead distribution power lines. These requirements fall within the broader National Standards and Guidelines (e.g. AS 7000). This blog has been put in place to facilitate the development of innovative project designs that will aim at:

(a) Reduced cost to customers;

(b) Reduced Life Cycle ( Maintenance) costs;

(c) Greater durability with due consideration to location in a cyclonic areas;

(d) Safety of workers and the General Public;

(e) Environmental Compatibility;

(f) Electromagnetic Field Compatibility;

(g) Favorable public acceptance ( aesthetics); and

(h) Increased network safety and reliability

When the requirement for a line has been established, the following factors need to be considered before the design can commence. They are:

a) Potential number of Customers and total load;

b) Estimation of potential load growth;

c) Availability/ and or requirement for interconnections;

d) Selection of Voltage for line operation;

e) Size and location of loads (Bulk supply, transformers)

f) Selection of Route

g) Length of line

h) Life Cycle costs

Introduction to Design of Distribution Overhead Power Line

Dear Readers the following blogs will be about designing distribution overhead power lines

So be with us to learn more have a good Read!!!

General

This blog describes the engineering process involved in designing distribution overhead power lines. These lines typically originate from Zone substations as Medium Voltage lines and are stepped down to Low Voltage through distribution transformers. Low Voltage overhead power lines then transmit power from transformers to customer installations. Some customers are supplied directly from the Medium Voltage network.

Overhead Power lines account for a significant proportion of  Power networks. These assets involve large amounts of capital expenditure, both by utility Power and customers. Also, these lines need to be properly designed and constructed and it is imperative that a high level of engineering input is put into their designs, particularly because these lines may be built in cyclonic areas. Effort expended here could avoid unnecessary expenses for utility Power and customers and ensure that the customer's requirements and all of utility Power's requirements are catered for.

Each overhead line requires different design considerations, configurations, layouts, etc. As such, there may be many different ways to approach a design.

The information contained in this blog will assist the designer to develop a structured design approach, and ensure that the optimum line configuration is selected at all times.


AC 12V-0-12V transformer